Bacteriological and Antibiotic Resistance Profile of Isolated Organisms of Post-Caesarean Suppuration in the Department of Gynaecology and Obstetrics of Laquintinie Hospital, Douala, Cameroon

Essome H1,2*, Ebongue Co1,2, Doumbe J1, Fougang Me1, Boten MF1 and Adiogo D1

1Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Cameroon
2Gynaecology and Obstetrics Service, Laquintinie Hospital Douala, Cameroon

Abstract

Introduction: The objective of our study was to identify the bacteria associated with the post-Caesarean surgical site infection, and their antibiotic resistance profile, in the Department of Gynaecology and Obstetrics at Laquintinie Hospital in Douala.

Methods: We conducted a cross-sectional and analytical study on the removal of post-caesarean section suppuration at Laquintinie Hospital in Douala. After swabbing the superficial pus and syringe puncture for the deepest pus, the samples were sown on culture media allowing the growth of most of the germs involved in this type of infection. Identification was made using ApiTM galleries (BioMerieux, France), and antibiotic resistance using the Mueller Hinton agar plate method.

Results: We had 260 cases of caesareans during the study period. The mean age of the patients was 27.2 ± 0.6 years, the Mean Hospital Stay (MHS) was 9.1 ± 0.4 days. The prevalence of infection was 28.8%, considered to be associated with care in most of cases. The bacteria responsible for these infections were mostly Gram-positive cocci (45%), followed by enterobacteria (32%), and non-fermenting gram-negative bacilli (23%). Staphylococcus aureus was the predominant species with 33% of cases, followed by Pseudomonas aeruginosa 21% and Klebsiella pneumoniae 11%. The bacteria encountered were multi-resistant to the different families of antibiotics tested, with a resistance level varying between 92 and 98% with respect to beta lactamates, including for imipenem (47% of resistant strains). Isolated organisms were resistant to aminoglycosides, namely gentamycin and neltimicin at 51.5% and 81.8%, respectively.

Conclusion: Post-caesarean infection is a concern at the Maternity of Laquintinie Hospital. Reinforcement of hygiene measures, knowledge of local bacterial ecology and surveillance of antibiotic resistance are necessary to improve the management of these infections.

Keywords: Sarcoidosis; Neurosarcoidosis; Epidemiology; Drug prescribing

Introduction

Caesarean section is one of the most commonly performed surgical procedures in obstetrics and is certainly one of the oldest operations in surgery [1,2]. The risk and safety associated with caesarean delivery differ from one place to another [3]. Despite the huge progress made in obstetrical technique and anaesthesia to provide better maternal-fetal safety during caesarean section, the rates of infectious complications remain high, sometimes calling into question the vital prognosis and obstetric outcome of patients [4]. These infectious complications of obstetric surgeries are potential sources of post-caesarean morbidity and mortality. Postoperative infections in obstetric gynaecology include urinary tract infection, endometritis, surgical wound infection, perineal infection, and sepsis [5]. In France, the global incidence of nosocomial infections among women who have had a caesarean section is estimated at 19%, and a study conducted in 2005 revealed a rate of Surgical Site Infection (SSI) after caesarean section of 2.6% [6,7]. In Africa, a few authors have reported the incidence of infectious complications of caesarean section which ranges from 10.3% in Morocco to 40.5% in Guinea [8,9]. Post-caesarean suppuration rates remain high (between 19 and 38.7%), leading to prolonged hospitalization, increased health care costs and workload for health facility staff [10,11]. In Cameroon, a study conducted at the University Hospital in Yaoundé in 2007 revealed an incidence of high postoperative infection of 23.5% in gynaecological and obstetric surgeries [12]. In 2015 the incidence of post-caesarean infectious complications was 9.04% and 1.17% respectively at Central Hospital and Yaoundé General Hospital [13]. The aim of this study was to identify the bacteria associated with post caesarean surgical site infection; and their antibiotic resistance profile in the department of Gynaecology and Obstetrics at Laquintinie Hospital in Douala, Cameroon.

Methods

Framework and type of study: we conducted a cross-sectional and analytical study in the departments of Gynaecology and Obstetrics at Laquintinie Hospital in Douala (LHD) where patient recruitment and sample collection were performed; and the Clinical Biology Laboratory at Douala General Hospital (DGH) for the analysis of these samples. The study was conducted from 03rd December 2015 to 30th April 2016, giving a duration of 05 months.

Study population: this included women who had a caesarean section at Laquintinie Hospital, wether admitted to the Gynecology and Obstetrics department or not, and who had suppuration of the postoperative wound.

Surgical Site Infections (SSI) was defined according to the criteria of the Centers for Disease Control and Prevention (CDC) [14]:

- Superficial SSI affecting the skin, subcutaneous tissues above the fascia.
- Deep SSI affecting tissues or spaces located at or below the fascia.
- Organ or site SSI including endometritis and pelvic abscess were excluded.

*Corresponding author: Essome H, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP: 4035 Douala, Cameroon

Received: Sep 27, 2018; Accepted: Oct 05, 2018; Published: Oct 07, 2018

Citation: Essome H, Ebongue Co, Doumbe J, Fougang Me, Boten M and Adiogo D. Bacteriological and Antibiotic Resistance Profile of Isolated Organisms of Post-Caesarean Suppuration in the Department of Gynaecology and Obstetrics of Laquintinie Hospital, Douala, Cameroon. GSL J Public Health Epidemiol. 2018; 1:108.
Identification of microorganisms

The colonies obtained were identified based on the study of their biochemical and enzymatic characteristics, using the APITM galleries (BioMérieux, France) after incubation at 37 °C, for 24 hours and visual colorimetric reading according to the manufacturer’s recommendations.

Antibiotic sensitivity: performed by diffusion technique of antibiotic discs on Mueller Hinton agar medium (thickness of 4 ± 0.5 mm), and measurement of the inhibition diameter using sliding callipers after 18 to 24 hours incubation at 37 °C, according to the recommendations of the committee of the antibiogram of the French Society of Microbiology (CA-SFM) [15]. Results were categorized as Resistant (R), Intermediate (I) and Sensitive (S). For the calculation of resistance rates, the “intermediate” strains were included in the “Resistant” category.

Seventeen discs of antibiotics (Bioanalyse®) were used, namely: - Oxacillin, Netilmicin, Gentamicin, Tobramycin, Ciprofloxacin, Levofloxacin, Ofloxacin, Pristinamycin, Fusidic acid, Vancomycin, for Gram-positive cocci.

- The gap of 2 cm was respected between two discs and 1.5 cm between the discs and the edges of petri dishes.

Data analysis: Performed using the IBM SPSS software version 20. The Chi-square test was used for the qualitative variables. A value of p <0.05 was considered significant.

Ethics: We obtained the research authorization of the Directors of the LHD, the DGH and the clearance from the Institutional Ethical Committee of the University of Douala.

Results

During the recruitment period, 260 eligible caesarean sections were included in the study. The mean age of the patients was 27.24 ± 0.67 years with a range of 15 to 44 years. The most represented age group was 25-35 years old (54.62%). Most women who had a caesarean were married (74.62%) with a high school education (54.62%) and were housewives (83.85%) (Table 1).

Of the 260 cases of caesarean section, 75 had a Surgical Site Infection (SSI), giving a prevalence of 28.8%. The age group most affected by the infection was 25-35 (54.62%).

Infection occurred between the 6th and 14th post-caesarean days in 72% of patients, and before day 6 in 8% of cases (Table 2). These patients made a sum of 685 days of hospitalization, with an average length of stay (LOS) of 9.1 ± 0.4 days with a range of 7 to 28 days.

Table 1: Socio-demographic and clinical data.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>POST-CAESAREAN INFECTION</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15-25]</td>
<td>23</td>
<td>57</td>
</tr>
<tr>
<td>[25-35]</td>
<td>41</td>
<td>101</td>
</tr>
<tr>
<td>[35-45]</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>56</td>
<td>138</td>
</tr>
<tr>
<td>Single</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>Level of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>25</td>
<td>62</td>
</tr>
<tr>
<td>Secondary</td>
<td>41</td>
<td>101</td>
</tr>
<tr>
<td>University</td>
<td>09</td>
<td>22</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housewife</td>
<td>63</td>
<td>155</td>
</tr>
<tr>
<td>Employed</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Average length of stay (Days)</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>HIV +</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>HBV +</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Data collection procedure: After obtaining the informed consent of the patients concerned, all information was collected using anonymous questionnaires that included demographic variables (age), the Human Immunodeficiency Virus serological status, the date of entry, postoperative hospital stay and operative wound evolution; as well as the results of the bacteriological analysis of pus.

Samples: These were taken at the site of the infection after careful decontamination of the wound margins with an antiseptic. Superficial pus was collected with a sterile swab, and deep pus with a sterile syringe needle.

Isolation of microorganisms: After noting the macroscopic appearance of secretions (colour, odour, abundance), direct examination of smears after Gram staining allowed the identification and quantification of polymonuclear cells. Seeding was carried out on the usual culture media to isolate most bacteria generally found in this type of infections, including Chapman agar for Staphylococci, Eosin Methylene Blue (EMB) for Gram-negative bacilli, Chocolate for Streplococci. The inoculated media were then incubated in a stove in a normal atmosphere and at 37 °C. for 18 to 24 hours.

Citation: Essome H, Ebongue Co, Doumbe J, Fougang Me, Boten M and Adiogo D. Bacteriological and Antibiotic Resistance Profile of Isolated Organisms of Post-Caesarean Suppurration in the Department of Gynaecology and Obstetrics of Laquintinie Hospital, Douala, Cameroon. GSL J Public Health Epidemiol. 2018; 1:108.
Surgical site infections were surgical-related in 8% of cases and related to post-operative care in 92% of cases (Table 2).

A total of 75 pus samples were analysed with 3 (4%) sterile cultures and 72 (96%) positive cultures, of which 44 (61.1%) in mono-microbial culture and 28 (38.9%) in bi culture.

On positive cultures, 100 bacterial strains were isolated, including 55% Gram-negative bacilli and 45% Gram-positive Cocci. Staphylococcus aureus (33%) was the major strain, followed by Pseudomonas aeruginosa (21%), Klebsiella pneumoniae (11%) and coagulase-negative Staphylococci (11%) (Table 3).

Staphylococcus aureus, which was the predominant germ, had a high resistance to antibiotics, 78.79% to methicillin (MRSA), more than 50% to quinolones and vancomycin, variable for aminoglycosides. The most active molecules on these S. aureus strains were fusidic acid (3%), pristinamycin (6%), and Tobramycin (18.1%) (Figure 1).

Klebsiella pneumoniae was 100% resistant to Amoxicillin + Clavulanic acid and third generation cephalosporins. The resistance rate was also high for Netilmicin (72.7%) whereas these strains of K pneumoniae showed a good sensitivity to other aminoglycosides with 9% of resistance for Gentamycin and 0% for amikacin and tobramycin. All strains were sensitive to Imipenem and fluoroquinolones (Figure 2).

Isolated strains of Pseudomonas aeruginosa had resistance levels greater than 20% for the set of molecules tested, apart from Colistin and Levofloxacin (19%) (Figure 3).
The bacteria encountered were sensitive only to a small number of antibiotics usually active in therapy. Shittu in South Africa found that beta-lactamases were the least active molecules of all antibacterial agents tested [26]. In our series, 78.79% of strains of Staphylococcus aureus were resistant to Methicillin (MRSA), Srun in Cambodia in 2011 found 50% of MRSA [22]. Pseudomonas aerugi nosa and Klebsiella pneumoniae showed a high level of resistance to betalactamates (third-generation cephalosporins and Amoxicillin + Clavulanic acid), these high levels of resistance observed could be explained by the fact that most Enterobacteriaceae including these strains of Klebsiella pneumoniae, produced broad-spectrum beta-lactamases, whereas Imipenem, Tobramycin, Amikacin, and fluoroquinolones remained very active, and Eddlimi in Tunisia in 2010 found that K pneumoniae had a very good sensitivity to imipenem and fluoroquinolones [27].

Conclusion

Bacteria frequently isolated from post-caesarean wounds have elevated levels of resistance to the main families of antibiotics tested. This work should make it possible to adapt probabilistic antibiotic therapy, and to set up a reinforcement of the hygiene measures, as well as a global policy of identification of the favourable factors, which will make it possible to significantly reduce these germs multi resistant responsible for these post-caesarean surgical site infections.

Limitations of the study: We could not have data on the urgency or not and the duration of the intervention, which are factors that can promote post-operative infections.

References


